Kilonova: Colliding Neutron Stars

A little update on where I am with everything at the moment. Again I am incredibly apologetic for updating less frequently recently due to a lot going on. As you might already know, I entered the Breakthrough Junior Challenge, been notified as a semifinalist, and recently crowned Regional Champion of Europe – the popular vote process definitely was more time consuming than I had imagined, but now (I hope) I can share with you some of the exciting things I’ve been wanting to write about for a while.

wallpaper__somewhere__something_incredible_is_waiting_to_be_known__7

Firstly this post is on what I consider as THE BIGGEST DISCOVERY IN PHYSICS this year – the neutron star collision. You might already know that the 2017 Nobel Prize in Physics was awarded to the three leading physicists who were involved in a worldwide collaboration in the search for gravitational waves. The “kilonova” on August 17th was not only a detection of another gravity wave but it also unveiled so many more utterly amazing things about the cosmos we were yet to discover.

Neutron Stars

fb0f536c8c0bd7b2ccf429747dd36c12--neutron-star-about-space

To start off let’s jump straight into the science behind the event of colliding Neutron stars. Neutron stars can be thought of as the less extreme versions of black holes – which are a result of very massive stars collapsing under their own gravitational pull and forming a point of infinite space-time curvature. These stars are the remnants of the supernovae of stars that are roughly 10 to 29 solar masses, too big to form a white dwarf (like how our own Sun will after its death) and too small to form a black hole. When a star this size explodes, its gravity is so strong that it literally forces electrons and protons to combine into neutrons, and the neutron star is stopped from further collapse by neutron degeneracy pressure. Neutron stars are extremely small and dense, their diameters are the size of cities but a teaspoon can be the weight of Mount Everest. Thus, there is no wonder how they produce immensely strong gravitational fields and not only cause gravitational lensing but also gravitational waves.

Continue reading

Advertisements

Breakthrough Junior Challenge – Black Hole Information Paradox

Dear all,

I have decided to submit an entry to this year’s Breakthrough Junior Challenge, which is a competition in which you have to make a 3-minute video explaining a scientific concept/idea to a general target audience. I chose the Black Hole Information Paradox as my topic because I was reading into the Holographic Principle over the summer and fell in deep haha.

The following is my video – I hope you like it and could give it a thumbs up on Youtube if that’s a possibility.

And..check out the Breakthrough Junior challenge website!

Leave some thoughts below!

Susan

Carl Sagan

My life is a little hectic at the moment due to UCAS (University Application) deadlines and so on. While in the middle of composing my personal statement, I found a small tribute text I had written about Carl Sagan last year as a response to the following question for an application.

If you could have dinner with anyone alive or dead, who would it be and why?

And I followed up with this:

I would love to have dinner with Carl Sagan.

wallpaper__somewhere__something_incredible_is_waiting_to_be_known__7

Continue reading

Short Rant about Entropy and the Universe

1entropy.gifOne of the most important laws of Physics is perhaps one we have all heard once in a while – the second law of thermodynamics.

This law states that the entropy – in a closed system – in which we can infer as the Universe, will always increase.

A common misconception with the term entropy is that it is a measure of disorder. A “disordered” state does not necessarily mean that it has high entropy and vice versa. Entropy is rather the number of ways particles can be arranged. We can take tea and milk as an example, as many people do. Looking at the tea and milk system, at the instantaneous moment when you pour milk into tea, it is perceived to have low entropy, this is because the milk molecules are virtually sitting on top of the tea molecules. When you wait for a second or two until the milk starts to blend and dissolve into the tea, the system begins to increase in entropy, because there are so many more ways for the milk and tea molecules to arrange themselves in this sense, rather than being stacked on top of each other. Continue reading

Black Holes #1 – Singularities and Hawking Radiation

BH_wip_v14
The Black Hole from Interstellar

Black Holes seem like something that only exists in Science fiction, like Dark Matter and Energy, however, these astronomical objects are in fact at the heart of theoretical research within Cosmology. Research involving Black Holes may likely help us uncover more about the mysteries of Quantum Gravity, something Physicists believe to be the Theory of Everything.

main-qimg-23a28d9b4b5ba3b3e6ebe7a2ec8456bd-c

In simple terms, a Black Holes is a region in which the gravitational influence is so strong that nothing, not even light, can escape its pull beyond the Event Horizon, which means that the Escape velocity is essentially greater than the speed of light. Escape velocity is the speed in which an object needs to travel at to escape a gravitational field, e.g. the Earth’s.

Continue reading

My Scottish Space School Experience

SSSLOGO_SMBonjour fellow bloggers and blog viewers, I just came back from a fantastic residential week at Scottish Space School and I just thought it would be great to share this great experience with you all.

The Scottish Space School, as I mentioned several months before in a “thoughts” post, is a residential week aimed at students in their second last year of high school who are interested in pursuing a career in Engineering, Space Exploration or something along these lines, and is situated in the University of Strathclyde, Glasgow. This year I was one of the lucky 100 students to be selected from over 500 applicants based around Scotland to attend the week running from 11th to 16th June 2017.

The week-long programme included different engineering workshops, lectures from senior NASA guests, talks from people who worked in the Space industry, fun social events and many more.

Continue reading

How Small Can You Go in Scale?

After the many ramblings I made regarding Dark Matter previously, I want to turn around and think about Baryonic Matter again. Ordinary Matter is something that physicists know much more about than the mysterious Dark Matter and Dark Energy, even though in reality they do make up more than 95% of our known Universe. We are more knowledgeable about Baryonic Matter because of its presence all around us, after all, it is everything we can see and detect: from forms of life, elements in the Earth’s crust and mantle, buildings, cars, the Earth, the Sun, all of the stars… you get the idea.

uesc_05_img0271.jpg

Now, the stuff that makes up the matter. Firstly what comes to our mind may be elements, which are a table of 100 odd substances that are often called the “primary constituents of matter”. These elements can be identified through their chemical properties and are placed in the Periodic table in order of increasing atomic number (the number of protons in its atom’s nucleus).

70726a8a1270b08b0b0f66134227bad1

Atoms are another level down from the elements of the periodic table, which distinguishes different types of atoms. Atoms themselves is another study on its own. In the early 20th Century, Rutherford and a couple other physicists discovered an awful lot that directly correlates to our modern understanding of the atom through an experiment – firing alpha particles at a piece of gold leaf.

Continue reading

Dark Matter #2: Gravitational Lensing

heic1506e.jpgA couple of months ago I talked about a piece of evidence supporting the existence of Dark Matter which is the fact that the stars in the outskirts of galaxies were seen to move at a similar pace as galaxies near the galactic core, defying the norm of the Keplerian Decline.

Recap: Dark Matter makes up roughly 25% of the Universe, so it is five times more prevalent than ordinary Baryonic Matter. Physicists gave it the name Dark Matter not because of it having some mysterious evil property or anything of that sort, but because it simply does not interact with Electromagnetic Radiation. I agree Physicists are a creative bunch.

Continue reading

Renewables…you say?

Most of the energy we use to power technology come from finite sources which are not sustainable. This energy which may be in the form of either fossil fuels, coal or even nuclear fuels and so on will eventually be used up. However renewable sources such as solar power will not run out…..until the sun runs out of hydrogen fuel but that’s another story.

0318199_l
Even my trusty fx- 85GT PLUS uses solar power.

We are able to harness the light energy radiated by the sun by the used of solar cells. A solar cell is an electronic device made of semiconductors which exhibit the photovoltaic effect to convert light energy into electrical energy. Semiconductors are materials which lie between conductors and insulators. A conductor is a material which is composed of atoms in which electrons are easily freed from the nuclei. Even though it is able to form a current, it remains electronically neutral as there are the same number of positive protons and negative free electrons. An insulator, on the other hand, is a material which is composed of atoms which hold more tightly onto their electrons so they have no free electrons like conductors. Current is a measure of the rate of flow of charge through a material, with the electrons being the charge carriers transporting energy across a circuit.  Continue reading

On Polaroid Filters – Brief

polaroid5_zps7a198bc5Light is weird. Light or Electromagnetic Waves are well, waves. They are a result of a changing oscillating electric field and a magnetic field. Sometimes we call them Photons, massless high-speed subatomic particles, coming in packets called Quanta. Wave-particle duality is only the brief introduction of the enormous and extraordinary area within Physics called Quantum Theory.

A slinky is a nice little demonstration of how light travels. Light is a transverse wave so it vibrates perpendicular to the direction of energy travel. In Third Year of High School, my Physics teacher used a slinky as an example to illustrate this feature of a transverse wave and also the other, longitudinal wave, which is a wave in which its vibrations are parallel to the direction of travel. Two people held the slinky at the two ends and one begins to vibrate the slinky coils left to right.

xrtvnpeh6180202492082511076 Continue reading