Computers: The Past

Hi, everyone! I’m a time-traveller and the new writer for Passion For STEM. I hope you don’t hate my writings too much. To understand the future of Computing, we must first know at least a little about the past. Let’s do some time travelling together, then.

blur close up code computer
Photo by luis gomes on Pexels.com

*POOF*

It’s 1000 BCE and we’re in a moneylender’s place in China. We see someone asking for a loan of what is apparently a big amount (We know this because Susan is with us and translates it for us.) (Thanks, Susan.). What do we see the moneylender doing his mathematical calculations on?

It’s a weird rectangular device with lots of little beads in it. Familiar, huh?
This is currently known as The Abacus.

multicolored abacus photography
Photo by Skitterphoto on Pexels.com

*POOF*

We’re back here. So, the Abacus was invented by the Chinese a long time (we’ll see how long when we take our next trip) before anyone even came close to inventing a device that helped humans in solving their math problems. It was a simple device with very basic operations but still could help a lot when big numbers were into consideration (like we saw at that moneylender’s).

Continue reading

The De Broglie Hypothesis – Physics Research Project #1

Hello, it’s been a while!

News:  Jiangmin has decided to settle as a freelance writer and will be publishing only on an occasional basis from now on.

If you can still remember me from my long absence, then great! I can happily say that my Advanced Higher exams are done and dusted, and I very recently graduated from high school. This Autumn I’ll be starting an Integrated Masters degree in Theoretical Physics…somewhere, I’ll update you on that one in August.

As you may know, I took Advanced Higher Physics this year and around 30% of the qualification is made up of a research project which must be based on a topic of the course. For the previous qualifications, it was required to do your project on a pre-selected topic, which consequently took away the fun, because the topics selected were either classical mechanics or electricity, I.e. not modern physics. But with this? I thought, QUANTUM IT IS.

One of the most amazing things in the course is the de Broglie hypothesis of Quantum mechanics which I very quickly made my project title.

Some background on the de Broglie Hypothesis

In the 20s, the early stages of the construction of quantum theory, a physicist Louis de Broglie postulated the wave particle duality of nature suggesting that all matter had both wave and particle properties.

wp.gif

Particles and waves are very different things. Particles are localised – they are in one place at one time and therefore can have a precise position. Particles have mass, they can bounce off one another and transfer energy through collision. Waves, on the other hand, are delocalised – to assign a “position” to a wave doesn’t really make much sense, waves can carry energy without the net transfer of mass, capable of interference, diffraction, reflection and so on.

Continue reading

Recent Fascination with a Non-Orientable Mathematical Surface – Mobius Strips

I have realised the last time I published a post was way back in November and that maintaining a blog is, in fact, tremendously difficult during preliminary exams period, which very fortunately just ended. It is not guaranteed that the general schedule for updates will be followed due to final year school workload at the moment but, I’ll no doubt try my best.

I have always enjoyed mathematics in school, whether it was the logic behind exam problems or solving tricky little mathematical puzzles. I had first become aware of the field of topology research after the announcement of the 2016 Nobel Prize in Physics, where pretzels, doughnuts and mugs were used to demonstrate topological properties considering the different number of holes each contains. In a sense, if two objects have the same number of holes, they are topologically equivalent, because they can be deformed into the same object without tearing or glueing or taping.

Image result for klein bottle
Klein Bottle

Now, I do not claim that I understand topology at the slightest, yes, the subject is way beyond me currently, but it’s always nice to read around some of its core ideas.

Continue reading

Kilonova: Colliding Neutron Stars

A little update on where I am with everything at the moment. Again I am incredibly apologetic for updating less frequently recently due to a lot going on. As you might already know, I entered the Breakthrough Junior Challenge, been notified as a semifinalist, and recently crowned Regional Champion of Europe – the popular vote process definitely was more time consuming than I had imagined, but now (I hope) I can share with you some of the exciting things I’ve been wanting to write about for a while.

wallpaper__somewhere__something_incredible_is_waiting_to_be_known__7

Firstly this post is on what I consider as THE BIGGEST DISCOVERY IN PHYSICS this year – the neutron star collision. You might already know that the 2017 Nobel Prize in Physics was awarded to the three leading physicists who were involved in a worldwide collaboration in the search for gravitational waves. The “kilonova” on August 17th was not only a detection of another gravity wave but it also unveiled so many more utterly amazing things about the cosmos we were yet to discover.

Neutron Stars

fb0f536c8c0bd7b2ccf429747dd36c12--neutron-star-about-space

To start off let’s jump straight into the science behind the event of colliding Neutron stars. Neutron stars can be thought of as the less extreme versions of black holes – which are a result of very massive stars collapsing under their own gravitational pull and forming a point of infinite space-time curvature. These stars are the remnants of the supernovae of stars that are roughly 10 to 29 solar masses, too big to form a white dwarf (like how our own Sun will after its death) and too small to form a black hole. When a star this size explodes, its gravity is so strong that it literally forces electrons and protons to combine into neutrons, and the neutron star is stopped from further collapse by neutron degeneracy pressure. Neutron stars are extremely small and dense, their diameters are the size of cities but a teaspoon can be the weight of Mount Everest. Thus, there is no wonder how they produce immensely strong gravitational fields and not only cause gravitational lensing but also gravitational waves.

Continue reading

Breakthrough Junior Challenge – Black Hole Information Paradox

Dear all,

I have decided to submit an entry to this year’s Breakthrough Junior Challenge, which is a competition in which you have to make a 3-minute video explaining a scientific concept/idea to a general target audience. I chose the Black Hole Information Paradox as my topic because I was reading into the Holographic Principle over the summer and fell in deep haha.

The following is my video – I hope you like it and could give it a thumbs up on Youtube if that’s a possibility.

And..check out the Breakthrough Junior challenge website!

Leave some thoughts below!

Susan

What the World has to Benefit from 3D Printing

Hello all,

I’m excited to share with you a post from a potential new author Tito who could be joining the Passion For STEM team and focusing on Engineering topics.

Susan

Author: Tito Adesanya

Imagine a world where you could take a few dozen images of your brother’s head and within an hour have it delivered to your doorstep in titanium, or in chocolate, if you really wanted – I did it last week. That’s right ladies and gentlemen, that’s our world. Begin digression…

This niche of technology is called 3D scanning, and as already seen impactful use the medical field where doctors have taken multiple images of the severed damaged head of a patient and with the click of a button, transformed it into a 3-dimensional image on a computer screen. This allowed them to zoom in (X100) on blood vessels, rotate the image to assess damage on the chin, and pan over the skull to search for open wounds – all without physically manipulating the fragile and sensitive head. The gem of this technology, though fantastic, can be found at its intersection with 3D printing. Uploading this same head onto some 3D printing software can be done in the same time and be printed. If you were wondering – yes, you can also scan and print and THE Eiffel Tower. Digression over.

3D printing, developed by Chuck Hull in 1983, has since only gained serious traction within the last 10 years, as machines have become over 300 times cheaper. This increased accessibility to the public has paved the way for hobbyists and academics to take centre stage and push the boundaries of what was thought was possible. Since, the University of Southampton has designed and produced the first fully 3D-printed plane, a high-end restaurant in London called Food Ink have 3D printed cakes and Master’s Degree students at MIT printed an entire bungalow in under 24 hours.

ZSJDIJ

The basic technology behind 3D printing, technically called additive layer manufacturing (ALM), initially on ran on a method called stereolithography, but up to 6 further methods have been developed since then. ALM works by taking a computer design of an object, then “slicing” it up into hundreds or thousands of horizontal layers – increasing the number of slices increases the quality of the print. The printer then produces the 3D object by printing out these layers on top of each other from the bottom up to form the final product. 3D printing is seeing an increasing number of valuable, and very potentially life-changing uses, many of them gaining increasing support from governmental bodies.

Continue reading

Carl Sagan

My life is a little hectic at the moment due to UCAS (University Application) deadlines and so on. While in the middle of composing my personal statement, I found a small tribute text I had written about Carl Sagan last year as a response to the following question for an application.

If you could have dinner with anyone alive or dead, who would it be and why?

And I followed up with this:

I would love to have dinner with Carl Sagan.

wallpaper__somewhere__something_incredible_is_waiting_to_be_known__7

Continue reading

Advances in tendinopathy

Previously I have touched on my summer research project on tendinopathy but today I thought I would share a bit of what I have done with you all, enjoy!

The driving force behind my research was due to the fact that soft tissue disorders represent the third most common musculoskeletal condition in the UK with 18 cases per 1000. These primarily affect tendons, accounting for 30% of all rheumatological consultations with a general practitioner. Causes are multifactorial but with an ever increasing number of professional athletes and also an ageing population whose tendons decrease in elasticity; there is an annual estimated cost to the NHS of £250 million. Though molecular pathophysiology of tendinopathy remains incompletely understood key inflammatory mediators such as proinflammatory cytokines are found to play a vital role.

protein_tnc_pdb_1ten
This little fella is tenascin-C

The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, in pathological situations such as chronic inflammation, cancer. By this report it is found to be at significantly higher levels during diseased tendon tissue repair as compared to healthy tendons to carry out its role as an inflammatory mediator and induce inflammation in attempts to repair the diseased tendon. Tenascin-C prolongs inflammation at site of trauma and leads to further tendon damage. These results provide useful insight into the complex cross-regulation of inflammation and tissue remodelling mediated by tenascin-C.

Some background information

Tendons are a band of flexible fibrous connective tissue which connects muscle to bone. They are present in joints and largely inelastic to conserve energy whilst transmitting the contractile movement of muscle to move bone. Despite the frequent mention of tendinopathy, tendons are in fact extremely tough it is found that collagen fibrillogenesis begins as an assembly of collagen molecules in a series of extracellular compartments, progressing through post-depositional maturation leading to thicker and longer fibrils and ending in their coalescence in the final stages of fibre production.

 

x2604-t-07
Figure 1Various tendons on the body which are affected by tendinopathy especially the Achilles tendon and rotator cuff

Continue reading

Short Rant about Entropy and the Universe

1entropy.gifOne of the most important laws of Physics is perhaps one we have all heard once in a while – the second law of thermodynamics.

This law states that the entropy – in a closed system – in which we can infer as the Universe, will always increase.

A common misconception with the term entropy is that it is a measure of disorder. A “disordered” state does not necessarily mean that it has high entropy and vice versa. Entropy is rather the number of ways particles can be arranged. We can take tea and milk as an example, as many people do. Looking at the tea and milk system, at the instantaneous moment when you pour milk into tea, it is perceived to have low entropy, this is because the milk molecules are virtually sitting on top of the tea molecules. When you wait for a second or two until the milk starts to blend and dissolve into the tea, the system begins to increase in entropy, because there are so many more ways for the milk and tea molecules to arrange themselves in this sense, rather than being stacked on top of each other. Continue reading

My mind-changing Science Summer School experience

Summer School Accomodation

From Monday 24th to Friday 28th July 2017 I had attended a residential Sciences Summer School which made me even more set on a future career in STEM (which I didn’t think was possible, haha) and especially medicine. Moreover, I made an abundance of fellow nerd friends who didn’t make me feel as lonely. There were a total of 58 fifth year pupils from all different backgrounds, Scottish, English, Welsh and 1 lone Northern Irish guy but somehow we all connected in a way which prior to the summer school, I believe to be impossible in the span of only a week.

Sunday

To give myself enough time to travel to the college, I had packed up my bags a day before and arrived to explore the city. Like the tourist I was, I stocked up on a plethora of various fridge magnets depicting medieval buildings and misleadingly sunny postcards which did not accurately depict the British weather. We (10 other people who also travelled down on Sunday) met and were instantly friends. I tried my hand at the out of tune piano and out problems just melted away for a while under the diminishing sunlight.

Monday

After everyone else arrived and the different procedural introductions we got stuck in problem solving. (Note: the icebreaker we had to go through did not in fact break-the-ice for it was a bingo involving facts of students. An absurd example being to find someone with blue socks which I was only one of a precious few.) The director of studies did not treat us like kids, as a brilliant mathematician he questioned our intuition. After explaining Claude Shannon’s Information theory, he asked an array of mind-bending questions, but even the simplest one caused commotion amongst budding mathematicians:

I have a bottle and a cap, together costing £1.10. The bottle costs exactly £1 more than the cap so my questions to you is: How much does the cap cost?”

Continue reading